Homepage

  • Postdoc University of Toronto, Canada, 8/2020-
  • Postdoc Free University of Brussels-VUB, Belgium, 2018-2020
  • Postdoc University of Wisconsin-Madison, USA, 2015-2018
  • Ph.D. Geology, University of Maryland, USA, 2015
  • M.S. Geology, Peking University, China, 2011
  • B.S. Geology, Southwest Petroleum University, China, 2008

Google Scholar / ResearchGate / ORCiD / department webpage / huan.cui@vub.be or geohcui@gmail.com

Publications

2020

23. Cui, H., Kaufman, A.J., Zou, H., Kattan, F.H., Trusler, P., Smith, J., Ivantsov, A.Y., Rich, T.H., Qubsani, A.A., Yazedi, A., Liu, X.-M., Johnson, P., Goderis, S., Claeys, P., Vickers-Rich, P., 2020. Primary or secondary? A dichotomy of the strontium isotope anomalies in the Ediacaran carbonates of Saudi Arabia. Precambrian Research, 343, 105720. https://doi.org/10.1016/j.precamres.2020.105720.

22. Xiao, S., Cui, H., Kang, J., McFadden, K.A., Kaufman, A.J., Kitajima, K., Fournelle, J.H., Schwid, M., Nolan, M., Baele, J.-M., Valley, J.W., 2020. Using SIMS to decode noisy stratigraphic δ13C variations in Ediacaran carbonates. Precambrian Research, 343, 105686. https://doi.org/10.1016/j.precamres.2020.105686.

21. Wang, W., Guan, C., Hu, Y., Cui, H., Muscente, A.D., Chen, L., Zhou, C., 2020. Spatial and temporal evolution of Ediacaran carbon and sulfur cycles in the Lower Yangtze Block, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 537, 109417. https://doi.org/10.1016/j.palaeo.2019.109417.

20. Yan, H., Pi, D., Jiang, S.-Y., Hao, W., Cui, H., Robbins, L.J., Mänd, K., Li, L., Planavsky, N.J., Konhauser, K.O., 2020. Hydrothermally induced 34S enrichment in pyrite as an alternative explanation of the Late-Devonian sulfur isotope excursion in South China. Geochimica et Cosmochimica Acta https://doi.org/10.1016/j.gca.2020.05.017.

19. Cao, M., Daines, S.J., Lenton, T.M., Cui, H., Algeo, T.J., Dahl, T.W., Shi, W., Chen, Z.-Q., Anbar, A., Zhou, Y.-Q., 2020. Comparison of Ediacaran platform and slope δ238U records in South China: Implications for global-ocean oxygenation and the origin of the Shuram Excursion. Geochimica et Cosmochimica Acta https://doi.org/10.1016/j.gca.2020.04.035.

18. Grazhdankin, D.V., Marusin, V.V., Izokh, O.P., Karlova, G.A., Kochnev, B.B., Markov, G.E., Nagovitsin, K.E., Sarsembaev, Z., Peek, S., Cui, H., Kaufman, A.J., 2020. Quo vadis, Tommotian? Geological Magazine, 157, 22–34. https://doi.org/10.1017/S0016756819001286.

2019

17. Cui, H., Xiao, S., Cai, Y., Peek, S., Plummer, R.E., Kaufman, A.J., 2019. Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan section, South China. Geological Magazine, 156, 1924–1948. https://doi.org/10.1017/S0016756819000293.

2018

16. Cui, H., Kaufman, A.J., Peng, Y., Liu, X.-M., Plummer, R.E., Lee, E.I., 2018. The Neoproterozoic Hüttenberg δ13C anomaly: Genesis and global implications. Precambrian Research, 313, 242–262. https://doi.org/10.1016/j.precamres.2018.05.024.

15. Cui, H., Kitajima, K., Spicuzza, M.J., Fournelle, J.H., Denny, A., Ishida, A., Zhang, F., Valley, J.W., 2018. Questioning the biogenicity of Neoproterozoic superheavy pyrite by SIMS. American Mineralogist, 103, 1362-1400. https://doi.org/10.2138/am-2018-6489.

14. Cui, H., Kitajima, K., Spicuzza, M.J., Fournelle, J.H., Ishida, A., Brown, P.E., Valley, J.W., 2018. Searching for the Great Oxidation Event in North America: A reappraisal of the Huronian Supergroup by SIMS sulfur four-isotope analysis. Astrobiology, 18, 519–538. https://doi.org/10.1089/ast.2017.1722.

13. Hantsoo, K.G., Kaufman, A.J., Cui, H., Plummer, R.E., Narbonne, G.M., 2018. Effects of bioturbation on carbon and sulfur cycling across the Ediacaran–Cambrian transition at the GSSP in Newfoundland, Canada. Canadian Journal of Earth Sciences, 55, 1240–1252. https://doi.org/10.1139/cjes-2017-0274.

12. Lang, X., Chen, J., Cui, H., Man, L., Huang, K.-J., Fu, Y., Zhou, C., Shen, B., 2018. Cyclic cold climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China. Precambrian Research, 310, 243–255. https://doi.org/10.1016/j.precamres.2018.03.004.

11. Zhang, F., Xiao, S., Kendall, B., Romaniello, S.J., Cui, H., Meyer, M., Gilleaudeau, G.J., Kaufman, A.J., Anbar, A.D., 2018. Extensive marine anoxia during the terminal Ediacaran Period. Science Advances, 4, eaan8983. https://doi.org/10.1126/sciadv.aan8983.

2017

10. Cui, H., Kaufman, A.J., Xiao, S., Zhou, C., Liu, X.-M., 2017. Was the Ediacaran
Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chemical Geology, 450, 59–80. https://doi.org/10.1016/j.chemgeo.2016.12.010.

2016

9. Cui, H., Grazhdankin, D.V., Xiao, S., Peek, S., Rogov, V.I., Bykova, N.V., Sievers, N.E., Liu, X.-M., Kaufman, A.J., 2016. Redox-dependent distribution of early macro-organisms: Evidence from the terminal Ediacaran Khatyspyt Formation in Arctic Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 122–139. https://doi.org/10.1016/j.palaeo.2016.08.015.

8. Cui, H., Kaufman, A.J., Xiao, S., Peek, S., Cao, H., Min, X., Cai, Y., Siegel, Z., Liu, X.M., Peng, Y., Schiffbauer, J.D., Martin, A.J., 2016. Environmental context for the terminal Ediacaran biomineralization of animals. Geobiology, 14, 344–363. https://doi.org/10.1111/gbi.12178.

7. Cui, H., Xiao, S., Zhou, C., Peng, Y., Kaufman, A.J., Plummer, R.E., 2016. Phosphogenesis associated with the Shuram Excursion: Petrographic and geochemical observations from the Ediacaran Doushantuo Formation of South China. Sedimentary Geology, 341, 134–146. https://doi.org/10.1016/j.sedgeo.2016.05.008.

6. Cao, H., Kaufman, A.J., Shan, X., Cui, H., Zhang, G., 2016. Sulfur isotope constraints on marine transgression in the lacustrine Upper Cretaceous Songliao Basin, northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 451, 152–163. https://doi.org/10.1016/j.palaeo.2016.02.041.

5. Liu, X.-M., Kah, L.C., Knoll, A.H., Cui, H., Kaufman, A.J., Shahar, A., Hazen, R.M., 2016. Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates. Geochemical Perspectives Letters, 2, 24–34. https://doi.org/10.7185/geochemlet.1603.

4. Zhou, C., Guan, C., Cui, H., Ouyang, Q., Wang, W., 2016. Methane-derived authigenic carbonate from the lower Doushantuo Formation of South China: Implications for seawater sulfate concentration and global carbon cycle in the early Ediacaran ocean.
Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 145–155. ttps://doi.org/10.1016/j.palaeo.2016.08.017.

3. Xiao, S., Narbonne, G.M., Zhou, C., Laflamme, M., Grazhdankin, D.V., Moczydłowska-Vidal, M., Cui, H., 2016. Toward an Ediacaran time scale: Problems, protocols, and prospects. Episodes, 39, 540–555. https://doi.org/10.18814/epiiugs/2016/v39i4/103886.

2015

2. Cui, H., Kaufman, A.J., Xiao, S., Zhu, M., Zhou, C., Liu, X.-M., 2015. Redox architecture of an Ediacaran ocean margin: Integrated chemostratigraphic (δ13C–δ34S–87Sr/86Sr–Ce/Ce*) correlation of the Doushantuo Formation, South China. Chemical Geology, 405, 48–62. https://doi.org/10.1016/j.chemgeo.2015.04.009.

2013

1. Hall, M., Kaufman, A.J., Vickers-Rich, P., Ivantsov, A., Trusler, P., Linnemann, U., Hofmann, M., Elliott, D., Cui, H., Fedonkin, M., Hoffmann, K.-H., Wilson, S.A., Schneider, G., Smith, J., 2013. Stratigraphy, palaeontology and geochemistry of the late Neoproterozoic Aar Member, southwest Namibia: Reflecting environmental controls on Ediacara fossil preservation during the terminal Proterozoic in African Gondwana. Precambrian Research, 238, 214–232. https://doi.org/10.1016/j.precamres.2013.09.009.